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Abstract

Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by
the source term. In our earlier work [J. Comput. Phys. 208 (2005) 206–227; J. Sci. Comput., accepted], we designed a well-
balanced finite difference weighted essentially non-oscillatory (WENO) scheme, which at the same time maintains genuine
high order accuracy for general solutions, to a class of hyperbolic systems with separable source terms including the shal-
low water equations, the elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow and a
two phase flow model. In this paper, we generalize high order finite volume WENO schemes and Runge–Kutta discontin-
uous Galerkin (RKDG) finite element methods to the same class of hyperbolic systems to maintain a well-balanced prop-
erty. Finite volume and discontinuous Galerkin finite element schemes are more flexible than finite difference schemes to
treat complicated geometry and adaptivity. However, because of a different computational framework, the maintenance of
the well-balanced property requires different technical approaches. After the description of our well-balanced high order
finite volume WENO and RKDG schemes, we perform extensive one and two dimensional simulations to verify the prop-
erties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-
oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in designing high order weighted essentially non-oscillatory (WENO) finite
volume schemes and Runge–Kutta discontinuous Galerkin (RKDG) finite element methods for solving hyper-
bolic systems of conservation laws with source terms (also called balance laws)
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ut þ f1ðu; x; yÞx þ f2ðu; x; yÞy ¼ gðu; x; yÞ ð1:1Þ
or in the one dimensional case
ut þ f ðu; xÞx ¼ gðu; xÞ; ð1:2Þ
where u is the solution vector, f1(u,x,y) and f2(u,x,y) (or f(u,x)) are the fluxes and g(u,x,y) (or g(u,x)) is the
source term.

These balance laws often admit steady state solutions in which the source term is exactly balanced by the
flux gradients. Such cases, along with their perturbations, are very difficult to capture numerically. A straight-
forward treatment of the source terms will fail to preserve this balance. The objective of well-balanced schemes
is to preserve exactly some of these steady state solutions. This objective should be achieved without sacrificing
the high order accuracy and non-oscillatory properties of the scheme when applied to general, non-steady state
solutions.

A typical example considered extensively in the literature for balance laws is the shallow water equation
with a non-flat bottom topology. Research on numerical methods for the solution of the shallow water system
has attracted significant attention in the past two decades. An early, important result in computing such solu-
tions was given by Bermudez and Vazquez [3]. They proposed the idea of the ‘‘exact C-property’’, which
means that the scheme is ‘‘exact’’ when applied to the stationary case h + b = constant and hu = 0, where
h, b and u are the water height, the given bottom topography, and the velocity of the fluid, respectively,
see (6.1) in Section 6.1. A good scheme for the shallow water system should satisfy this property. Also, Ber-
mudez and Vazquez introduced in [3] the first order Q-scheme and the idea of source term upwinding. After
this pioneering work, many other schemes for the shallow water equations with such well-balanced property
have been developed. LeVeque [21] introduced a quasi-steady wave propagation algorithm. A Riemann prob-
lem is introduced in the center of each grid cell such that the flux difference exactly cancels the source term.
Zhou et al. [38] used the surface gradient method for the treatment of the source terms. They used h + b for the
reconstruction instead of using h. For more related work, see also [13,14,17,19,20,24,26,33,34,37]. In particu-
lar, the authors of [33,34] presented well-balanced ENO and WENO schemes for the shallow water equations
and other equations.

Our development of well-balanced WENO finite volume schemes and discontinuous Galerkin methods is
based on our recent work [35,36]. In [35], we developed a well-balanced high order finite difference WENO
scheme for solving the shallow water equation, which is non-oscillatory, well balanced (satisfying the exact
C-property) for still water, and genuinely high order in smooth regions. Different from [33,34], a key ingredi-
ent of the technique used in [35] is a special decomposition of the source term, allowing a discretization to the
source term to be both high order accurate for general solutions and exactly well balanced with the flux
gradient for still water. Extensive one and two dimensional numerical experiments were provided in [35] to
demonstrate the good behavior of this scheme. In [36], we extended this idea of decomposition of source terms
to a general class of balance laws with separable source terms, allowing the design of well-balanced high order
finite difference WENO scheme for all balance laws falling into this category. This class is quite general,
including, besides the shallow water equations, the elastic wave equation, the hyperbolic model for a chemo-
sensitive movement, the nozzle flow and a two phase flow model.

In this paper, we consider finite volume WENO schemes first introduced by Liu et al. [22], see also [16,27],
and Runge–Kutta discontinuous Galerkin (RKDG) finite element methods that were originally developed by
Cockburn and Shu [8], see also [7,9]. We will generalize these schemes to obtain high order well-balanced
schemes. The crucial difference between the finite volume and the finite difference WENO schemes is that
the WENO reconstruction procedure for a finite volume scheme applies to the solution and not to the flux
function values. As a consequence, finite volume schemes are more suitable for computations in complex
geometry and for using adaptive meshes, however the maintenance of the well-balanced property requires dif-
ferent technical approaches. The RKDG methods can be considered as a generalization of finite volume
schemes, even though they do not require a reconstruction and evolve the complete polynomial in each cell
forward in time. The RKDG methods are therefore easier to use for multi-dimensional problems in complex
geometry, than the finite volume schemes, as the complicated reconstruction procedure can be avoided. Even
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though the detailed technical approaches are different, the framework of the algorithm construction in this
paper follows that in [35,36].

This paper is organized as follows. In Sections 2 and 3, we give a brief review of finite volume WENO
schemes and RKDG schemes for the homogeneous conservation laws. In Section 4, we describe the class
of balance laws under consideration and develop well-balanced finite volume WENO schemes, which at the
same time are genuinely high order accurate for the general solutions. The well-balanced generalization of
the RKDG schemes is presented in Section 5. In Section 6, we give several examples in applications which fall
into the category of balance laws discussed in Section 4, and show selective numerical results in one and two
dimensions to demonstrate the behavior of our well-balanced finite volume WENO schemes and RKDG
schemes, verifying high order accuracy, the well-balanced property, and good resolution for smooth and
discontinuous solutions. Concluding remarks are given in Section 7.

2. A review of high order finite volume WENO schemes

In this section, we briefly review the basic ideas of finite volume WENO schemes. For further details, we
refer to [2,16,18,22,27,29–31].

First, we consider a scalar hyperbolic conservation law equation in one dimension
ut þ f ðuÞx ¼ 0; ð2:1Þ

and discretize the computational domain with cells I i ¼ ½xi�1

2
; xiþ1

2
�; i ¼ 1; . . . ;N . We denote the size of the ith

cell by Dxi and the center of the cell by xi ¼ 1
2
ðxi�1

2
þ xiþ1

2
Þ. Let �uðxi; tÞ ¼ 1

Dxi

R
I i

uðx; tÞ dx denote the cell average
of u(Æ,t) over the cell Ii. In a finite volume scheme, our computational variables are �uiðtÞ, which approximate
the cell averages �uðxi; tÞ.

For finite volume schemes, we solve an integrated version of (2.1):
d

dt
�uðxi; tÞ ¼ �

1

Dxi
f uðxiþ1

2
Þ; t

� �
� f uðxi�1

2
Þ; t

� �� �
.

This is approximated by the following conservative scheme:
d

dt
�uiðtÞ ¼ �

1

Dxi
f̂ iþ1

2
� f̂ i�1

2

� �
ð2:2Þ
with f̂ iþ1
2
¼ F ðu�

iþ1
2
; uþ

iþ1
2

Þ being the numerical flux. Here u�
iþ1

2
and uþ

iþ1
2

are the high order pointwise approxima-

tions to uðxiþ1
2
; tÞ, obtained from the cell averages by a high order WENO reconstruction procedure.

In order to obtain a stable scheme, the numerical flux F(a,b) needs to be a monotone flux, namely F is
a nondecreasing function of its first argument a and a nonincreasing function of its second argument b.
There are many choices of these fluxes, such as the Godunov flux, the Engquist–Osher flux and the Lax–
Friedrichs (LF) flux. The difference among these fluxes is significant for low order schemes but becomes
less significant for higher order reconstructions. The simplest and most inexpensive monotone flux is the
Lax–Friedrichs flux:
F ða; bÞ ¼ 1

2
ðf ðaÞ þ f ðbÞ � aðb� aÞÞ; ð2:3Þ
where a = maxu |f 0(u)|. Depending on whether the maximum is taken globally (along the line of computation)
or locally, this flux is referred to as the Lax–Friedrichs (LF) or the local Lax–Friedrichs (LLF) flux.

The approximations u�
iþ1

2
and uþ

iþ1
2

are computed through the neighboring cell average values �uj. For a

(2k � 1)th order WENO scheme, we first compute k reconstructed values
ûðrÞ
iþ1

2

¼
Xk�1

j¼0

crj�ui�rþj; r ¼ 0; . . . ; k � 1;
corresponding to k different candidate stencils
SrðiÞ ¼ fxi�r; . . . ; xi�rþk�1g; r ¼ 0; . . . ; k � 1. ð2:4Þ
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The coefficients crj are chosen such that each of these k reconstructed values is kth order accurate, see [29].
Also, we obtain the k reconstructed values ~uðrÞ

i�1
2

, of kth order accuracy, using
~uðrÞ
i�1

2

¼
Xk�1

j¼0

~crj�ui�rþj; r ¼ 0; . . . ; k � 1;
with
~crj ¼ cr�1;j;
based on the same stencils (2.4). The (2k � 1)th order WENO reconstruction is a convex combination of all
these k reconstructed values
u�iþ1
2
¼
Xk�1

r¼0

wrû
ðrÞ
iþ1

2

; uþ
i�1

2
¼
Xk�1

r¼0

~wr~u
ðrÞ
i�1

2

.

The nonlinear weights wr satisfy wr P 0,
Pk�1

j¼0 wr ¼ 1, and are defined in the following way:
wr ¼
arPk�1
s¼0as

; ar ¼
dr

ðeþ brÞ
2

. ð2:5Þ
Here dr are the linear weights which yield (2k � 1)th order accuracy, br are the so-called ‘‘smoothness indica-
tors’’ of the stencil Sr(i) which measure the smoothness of the function u(x) in the stencil. e is a small constant
used to avoid the denominator to become zero and is typically taken as 10�6. By symmetry, ~wr is computed by:
~wr ¼
~arPk�1
s¼0 ~as

; ~ar ¼
~dr

ðeþ brÞ
2
; ð2:6Þ
with
~dr ¼ dk�1þr. ð2:7Þ
The exact form of the smoothness indicators and other details about the WENO reconstruction can be found
in [18,29].

For hyperbolic systems such as the shallow water equations, we use the local characteristic decomposition,
which is more robust than a component by component version. First, we compute an average state �uiþ1

2

between �ui and �uiþ1, using either the simple arithmetic mean or a Roe�s average [25]. The WENO procedure
is used on
�vj ¼ R�1�uj; j in a neighborhood of i. ð2:8Þ

where R = (r1, . . . , rn) is the matrix whose columns are the right eigenvectors of f 0ð�uiþ1

2
Þ. The reconstructed val-

ues v�
iþ1

2
thus computed are then projected back into the physical space by left multiplying with R, yielding

finally the reconstructed values in the physical space.
With the reconstructed values u�

iþ1
2
, the right-hand side of (2.2) can be computed through (2.3) to high order

accuracy. Together with a TVD high order Runge–Kutta time discretization [30], this completes the descrip-
tion of a high order finite volume WENO scheme.

Finite volume WENO schemes in the two dimensional case have the same framework but are more com-
plicated to implement. In this paper, we consider only rectangular cells for simplicity, although the technique
also works for general triangulations. Consider the two dimensional homogeneous conservation law
ut þ f1ðu; x; yÞx þ f2ðu; x; yÞy ¼ 0; ð2:9Þ
together with a spatial discretization of the computational domain with cells I ij ¼ ½xi�1
2
; xiþ1

2
� � ½yj�1

2
; yjþ1

2
�;

i ¼ 1; . . . ;N x; j ¼ 1; . . . ;N y . As usual, we use the notations:
Dxi ¼ xiþ1
2
� xi�1

2
; Dyj ¼ yjþ1

2
� yj�1

2

to denote the grid sizes.
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We integrate (2.9) over the interval Iij to obtain:
d

dt
�uðxi; yj; tÞ ¼ �

1

DxiDyj

Z y
jþ1

2

y
j�1

2

f1ðuðxiþ1
2
; y; tÞÞ dy �

Z y
jþ1

2

y
j�1

2

f1ðuðxi�1
2
; y; tÞÞ dy

0
@

þ
Z x

iþ1
2

x
i�1

2

f2ðuðx; yjþ1
2
; tÞÞ dx�

Z x
iþ1

2

x
i�1

2

f2ðuðx; yj�1
2
; tÞÞ dx

1
A; ð2:10Þ
where
�uðxi; yj; tÞ ¼
1

Dxi Dyj

Z y
jþ1

2

y
j�1

2

Z x
iþ1

2

x
i�1

2

uðn; g; tÞ dn dg
is the cell average. We approximate (2.10) by the conservative scheme
d

dt
�uijðtÞ ¼ �

1

Dxi
ðf̂ 1Þiþ1

2;j
� ðf̂ 1Þi�1

2;j

� �
� 1

Dyj

ðf̂ 2Þi;jþ1
2
� ðf̂ 2Þi;j�1

2

� �
; ð2:11Þ
where the numerical flux ðf̂ 1Þiþ1
2;j

is defined by
ðf̂ 1Þiþ1
2;j
¼
X

a

waF u�x
iþ1

2
;yjþbaDyj

; uþx
iþ1

2
;yjþbaDyj

� �
; ð2:12Þ
where ba and wa are the Gaussian quadrature nodes and weights, to approximate the integration in y:
1

Dyj

Z y
jþ1

2

y
j�1

2

f1ðuðxiþ1
2
; y; tÞÞ dy.
The monotone flux F(a,b) is the same as defined above (for example, Formula (2.3)). u�x
iþ1

2
;yjþbaDyj

are the

(2k � 1)th order accurate reconstructed values obtained by a WENO reconstruction procedure. In this proce-
dure, for rectangular meshes, if we use the tensor products of one dimensional polynomials, i.e., polynomials
in Qk� 1, things can proceed as in one dimension. A practical way to perform the reconstruction in two dimen-
sions is given as follows. We first perform a one dimensional reconstruction in one of the directions (e.g., the
y-direction), obtaining one dimensional cell averages of the function u in the other direction (e.g., the x-direc-
tion). We then perform a reconstruction in the other direction to obtain the approximated point values, see
[27,29].

Similarly, we can compute the flux ðf̂ 2Þi;jþ1
2

by
ðf̂ 2Þi;jþ1
2
¼
X

a

waF u�xiþbaDxi;yjþ1
2

; uþxiþbaDxi;yjþ1
2

� �
. ð2:13Þ
3. A review of high order discontinuous Galerkin methods

In this section, we give a short overview of another widely used high order scheme, namely the Runge–
Kutta discontinuous Galerkin method, which was first introduced by Cockburn and Shu. We refer to [5,7–
10] for more information.

Again, a scalar hyperbolic conservation law in one dimension is considered:
ut þ f ðuÞx ¼ 0; uðx; 0Þ ¼ u0ðxÞ. ð3:1Þ

As before, we discretize the computational domain into cells I i ¼ ½xi�1

2
; xiþ1

2
�, and denote the size of the ith cell

by Dxi and the maximum mesh size by h = maxiDxi.
First, we multiply Eq. (3.1) by an arbitrary smooth function v, integrate it over cell Ij and perform integra-

tion by parts to obtain
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Z
Ij

otuðx; tÞvðxÞ dx�
Z

Ij

f ðuðx; tÞÞoxvðxÞ dxþ f ðuðxjþ1
2
; tÞÞvðxjþ1

2
Þ � f ðuðxj�1

2
; tÞÞvðxj�1

2
Þ ¼ 0;Z

Ij

uðx; 0ÞvðxÞ dx ¼
Z

Ij

u0ðxÞvðxÞ dx.

ð3:2Þ
The main difference between the DG method and a traditional finite element method lies in the choice of the
test space and solution space. Here, we seek an approximation uh to u which belongs to the finite dimensional
space
V h ¼ V k
h � fv : vjIj

2 P kðIjÞ; j ¼ 1; . . . ;Ng; ð3:3Þ
where Pk(I) denotes the space of polynomials in I of degree at most k. Notice that uh can be discontinuous at
the cell boundary xjþ1

2
. In Eq. (3.2), we replace the smooth functions v by test functions vh from the test space

Vh, and u by the numerical solution uh. Together with the replacement of the nonlinear flux f ðuðxjþ1
2
; tÞÞ by a

numerical flux f̂ jþ1
2
¼ F ðuhðx�jþ1

2
; tÞ; uhðxþjþ1

2

; tÞÞ, we obtain the numerical scheme denoted by
Z
Ij

otuhðx; tÞvhðxÞ dx�
Z

Ij

f ðuhðx; tÞÞoxvhðxÞ dxþ f̂ jþ1
2
vhðx�jþ1

2
Þ � f̂ j�1

2
vhðxþj�1

2
Þ ¼ 0;Z

Ij

uhðx; 0ÞvhðxÞ dx ¼
Z

Ij

u0ðxÞvhðxÞ dx.

ð3:4Þ
As before, F(a,b) is chosen as a monotone flux to recover a finite volume monotone scheme for the piecewise
constant k = 0 case. We could, for example, again use the simple Lax–Friedrichs flux (2.3).

Another important ingredient for the RKDG method is that a slope limiter procedure should be per-
formed after each inner stage in the Runge–Kutta time stepping. This is necessary for computing solutions
with strong discontinuities. There are many choices for the slope limiters, see, e.g. [23]. In this paper, we use
the total variation bounded (TVB) limiter in [28,8,6,9]; we refer to these references for the details of this
limiter.

Together with a TVD high order Runge–Kutta time discretization [30], we have then finished the descrip-
tion of the RKDG method.

Multi-dimensional problems can be handled in the same fashion. We also perform an integration by parts
(Green�s formula) first, and then replace the boundary values by numerical fluxes. The main difference is that
the fluxes are now integrals along the cell boundary, which can be calculated by Gauss-quadrature rules. For
more details, we refer to [5,6,9].

4. Construction of well-balanced finite volume WENO schemes

In this section, we design a genuine high order finite volume WENO scheme for a class of general balance
laws (1.1). We will concentrate our discussion on the one dimensional case (1.2). Generalization to the multi-
dimensional case (1.1) can be done in some situations, for example the cases discussed in [35,36]; we present
the details for the two dimensional shallow water equations in Section 6.2.

Our main objective is to preserve certain steady state solutions while maintaining high order accuracy for
general solutions. The main idea in [35,36] to design a well-balanced high order finite difference WENO
scheme is to decompose the source term into a sum of several terms, each of which is discretized independently
using a finite difference formula consistent with that of approximating the flux derivative terms in the conser-
vation law. We follow a similar idea here and decompose the integral of the source term into a sum of several
terms, then compute each of them in a way consistent with that of computing the corresponding flux terms.
We first consider the case that (1.2) is a scalar balance law. The case of systems will be explored later.

We are interested in preserving exactly certain steady state solutions u of (1.2):
f ðu; xÞx ¼ gðu; xÞ. ð4:1Þ

As in [36], we make some assumptions on Eq. (1.2) and the steady state solution u of (4.1) that we are inter-
ested to preserve exactly:
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Assumption 4.1. The steady state solution u of (4.1) that we are interested to preserve satisfies
aðu; xÞ � uþ pðxÞ
qðxÞ ¼ constant ð4:2Þ
for some known functions p(x) and q(x).

Assumption 4.2. The source term g(u,x) in (1.2) can be decomposed as
gðu; xÞ ¼
X

j

sjðaðu; xÞÞt0jðxÞ ð4:3Þ
for some known functions sj and tj.

Note that Assumption 4.1 given here is more restrictive than that in [36]. This is due to the additional dif-
ficulties related to the finite volume formulation.

We would like to preserve exactly the steady state solutions u which satisfy Assumption 4.1, for a balance
law (1.2) with a source term satisfying Assumption 4.2.

Now let us describe the details of the algorithm. We consider the semi-discrete formulation of the balance
law
d

dt
�uiðtÞ ¼ �

1

Dxi
ðf ðuðxiþ1

2
Þ; tÞ � f ðuðxi�1

2
Þ; tÞÞ þ 1

Dxi

Z
I i

gðu; xÞ dx. ð4:4Þ
The time discretization is usually performed by the classical high order Runge–Kutta method. Before stating
our numerical scheme, we first present the procedure to reconstruct the pointwise values by the WENO recon-
struction procedure, and then decompose the integral of the source term into several terms, with the objective
of keeping the exact balance property without reducing the high order accuracy of the scheme. The scheme is
then finally introduced with a minor change on the flux term, compared with the original WENO scheme.

The first step in building the algorithm is to reconstruct u�
iþ1

2
from the given cell averages �ui, by the WENO

reconstruction procedure explained in Section 2, which are high order accurate approximations to the exact
value uðxiþ1

2
Þ. We use the smoothness indicators br to measure the smoothness of the variable u. The WENO

reconstruction can be eventually written out as
uþ
iþ1

2
¼
Xr

k¼�rþ1

wk�uiþk � Sþ�u ð�uÞi; u�iþ1
2
¼
Xr�1

k¼�r

~wk�uiþk � S��u ð�uÞi. ð4:5Þ
where r = 3 for the fifth order WENO approximation and the coefficients wk and ~wk depend nonlinearly on the
smoothness indicators involving the cell average �u, following (2.5) and (2.6). Here we obtain a linear operator
S��u ðvÞ (linear in v) which is obtained from a WENO reconstruction with fixed coefficients wk calculated from
the cell averages �u. Once again, our purpose is to find a high order finite volume scheme for a class of
conservation laws which can preserve the steady state solution (4.2). The key idea here is to use the linear oper-
ators S��u ðvÞ and apply them to reconstruct the functions �pi and �qi. Thus
pþ
iþ1

2
¼ Sþ�u ð�pÞi ¼

Xr

k¼�rþ1

wk�piþk; p�iþ1
2
¼ S��u ð�pÞi ¼

Xr�1

k¼�r

~wk�piþk;

qþ
iþ1

2
¼ Sþ�u ð�qÞi ¼

Xr

k¼�rþ1

wk�qiþk; q�iþ1
2
¼ S��u ð�qÞi ¼

Xr�1

k¼�r

~wk�qiþk.

ð4:6Þ

u� þp�
With the reconstructed values p�
iþ1

2
and q�

iþ1
2
, we obtain the pointwise value of a(u,x) by aðu; xÞ�iþ1

2
¼ iþ1

2
iþ1

2

q�
iþ1

2

.

Clearly, p�
iþ1

2
and q�

iþ1
2

are high order accurate pointwise approximation to the function of p(x) and q(x) at
the cell boundary xiþ1

2
. Hence, aðu; xÞ�iþ1

2
is a high order approximation to aðuðxiþ1

2
Þ; xiþ1

2
Þ.

Now assume that u is the steady state solution satisfying (4.2), namely
uþ pðxÞ ¼ cqðxÞ

for some constant c. If the cell averages �ui, �pi and �qi are computed in the same fashion (e.g., all computed
exactly, or all computed with the same numerical quadrature) from u, p(x) and q(x), then we clearly also have
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�ui þ �pi ¼ c�qi
for the same constant c. Since the reconstructed values u�
iþ1

2
, p�

iþ1
2

and q�
iþ1

2
are computed from the cell averages

�uj, �pj and �qj with the same linear operators S��u ðvÞ, we clearly have
u�iþ1
2
þ p�iþ1

2
¼ cq�iþ1

2

for the same constant c, that is,
aðu; xÞ�iþ1
2
¼ c ð4:7Þ
for the same constant c.
Clearly, for a steady state solution u satisfying Assumptions 4.1 and 4.2,
d

dx
f ðu; xÞ �

X
j

sjðaðu; xÞÞtjðxÞ
 !

¼ f ðu; xÞx �
X

j

sjðaðu; xÞÞt0jðxÞ ¼ f ðu; xÞx � gðu; xÞ ¼ 0.
Therefore, f ðu; xÞ �
P

jsjðaðu; xÞÞtjðxÞ is a constant. We would need to choose suitably ðtjÞ�iþ1
2
, which should be

high order approximations to tjðxiþ1
2
Þ such that
f ðu�iþ1
2
Þ �

X
j

sjðaðu; xÞ�iþ1
2
ÞðtjÞ�iþ1

2
¼ constant ð4:8Þ
for a steady state solution u satisfying Assumptions 4.1 and 4.2. In the applications stated later in Section 6, we
will specify the choices of ðtjÞ�iþ1

2
in each case.

The integral of the source term takes the form
Z
I i

gðu; xÞ dx ¼
X

j

Z
I i

sjðaðu; xÞÞt0jðxÞ dx.
We need to decompose it further in the following way in order to obtain a well-balanced scheme
X
j

Z
Ii

sjðaðu; xÞÞt0jðxÞ dx ¼
X

j

1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �Z
I i

t0jðxÞ dx
�

þ
Z

I i

sjðaðu; xÞÞ �
1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �� �
t0jðxÞ dx

�

¼
X

j

1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �
ðtjðxiþ1

2
Þ � tjðxi�1

2
ÞÞ

�

þ
Z

I i

sjðaðu; xÞÞ �
1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �� �
t0jðxÞ dx

�
. ð4:9Þ
The purpose of this decomposition is to ensure the balance with the flux difference term on the right-hand side
of (4.4), see the proof of Proposition 4.3. We remark that 1

2
ðsjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
ÞÞ can also be replaced

by sjðuþpðxÞ
qðxÞ
Þ where as usual the overbar denotes the cell average over the cell Ii, which could be used when there

is a singularity at the boundary, for example, in the application in Section 6.5.
Now we are ready to describe the final form of the algorithm
d

dt
�uiðtÞ ¼ �

1

Dxi
ðf̂ iþ1

2
� f̂ i�1

2
Þ þ 1

Dxi
ĝi; ð4:10Þ
with
ĝi ¼
X

j

1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �
ð̂tjÞiþ1

2
� ð̂tjÞi�1

2

� �
þ gi;j

� �
; ð4:11Þ
where ð̂tjÞiþ1
2

is a high order approximation to tjðxiþ1
2
Þ, whose definition will be described below, and gi,j is any

high order approximation to the integral
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Z
I i

sjðaðu; xÞÞ �
1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �� �
t0jðxÞ dx. ð4:12Þ
Comparing with (4.9), it is clear that ĝi is a high order approximation to the source term in (4.4).
The numerical flux f̂ iþ1

2
is defined by a monotone flux such as the Lax–Friedrichs flux (2.3)
F ðu�iþ1
2
; uþ

iþ1
2
Þ ¼ 1

2
f ðu�iþ1

2
Þ þ f ðuþ

iþ1
2
Þ � aðuþ

iþ1
2
� u�iþ1

2
Þ

h i
. ð4:13Þ
We need to make a modification to this flux, by replacing aðuþ
iþ1

2

� u�
iþ1

2
Þ in (4.13) with a sign ðqðxÞÞðaðu; xÞþiþ1

2�aðu; xÞ�iþ1
2
Þ. The numerical flux now becomes
f̂ iþ1
2
¼ 1

2
f ðu�iþ1

2
Þ þ f ðuþ

iþ1
2
Þ � a sign ðqðxÞÞðaðu; xÞþiþ1

2
� aðu; xÞ�iþ1

2
Þ

h i
. ð4:14Þ
We would need to assume here that q(x) in (4.2) does not change sign. The constant a should be suitably
adjusted by the size of 1

qðxÞ in order to maintain enough artificial viscosity. This modification does not affect
accuracy. For the steady state solution (4.2),
a sign ðqðxÞÞðaðu; xÞþiþ1
2
� aðu; xÞ�iþ1

2
Þ ¼ 0
because of (4.7). Hence, the effect of these viscosity terms becomes zero and the numerical flux turns out to be
in a simple form
f̂ iþ1
2
¼ 1

2
f ðu�iþ1

2
Þ þ f ðuþ

iþ1
2
Þ

h i
. ð4:15Þ
Following this, we treat the approximation ð̂tjÞiþ1
2

in (4.11) in a similar way:
ð̂tjÞiþ1
2
¼ 1

2
ðtjÞ�iþ1

2
þ ðtjÞþiþ1

2

h i
ð4:16Þ
where, as mentioned before, ðtjÞ�iþ1
2

are high order approximations to tjðxiþ1
2
Þ satisfying (4.8). Note that we

implement (4.16) for the general case, not only for the steady solution. There is no viscosity term in the source
term, compared with the numerical flux (4.14).

For the remaining source term gi,j, we simply use a suitable high order Gauss quadrature to evaluate the
integral. The approximation of the values at those Gauss points are obtained by the WENO reconstruction
procedure. It is easy to observe that high order accuracy is guaranteed for our scheme, and even if disconti-
nuities exist in the solution, non-oscillatory property is maintained.

We now formulate the preservation of the steady state solution (4.2) by our numerical scheme.

Proposition 4.3. The WENO-LF schemes as implemented above with (4.10), (4.11), (4.14) and (4.16) are exact

for steady state solutions satisfying (4.2) and can maintain the original high order accuracy for general solutions.

Proof: The high order accuracy is straightforward to observe. We only prove the well-balanced property here.
First, for the steady state solution a(u,x) = c for some constant c, the reconstructed values aðu; xÞ�i�1

2
are

also equal to the same constant c, see (4.7). Hence, we notice that the source term gi,j, which is a high order
numerical approximation of the integral in (4.12) by a Gauss quadrature, is simply zero since a(u,x) is equal
to aðu; xÞ�i�1

2
at each Gauss point. Furthermore, in this case the flux terms take the form (4.15) and (4.16).

Therefore, the truncation error reduces to
�f̂ iþ1
2
þ f̂ i�1

2
þ
X

j

1

2
sjðaðu; xÞþi�1

2
Þ þ sjðaðu; xÞ�iþ1

2
Þ

� �
ð̂tjÞiþ1

2
� ð̂tjÞi�1

2

� �

¼ �f̂ iþ1
2
þ
X

j

sjðcÞð̂tjÞiþ1
2
þ f̂ i�1

2
�
X

j

sjðcÞð̂tjÞi�1
2
¼ 0;
where we have used (4.7) for the first equality, and (4.8), (4.15) and (4.16) for the second equality. This finishes
the proof. h
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We now discuss the system case. The framework described for the scalar case can be applied to systems
provided that we have certain knowledge about the steady state solutions to be preserved in the form of
(4.2). Typically, for a system with m equations, we would have m relationships in the form of (4.2):
a1ðu; xÞ ¼ constant; . . . amðu; xÞ ¼ constant ð4:17Þ

for the steady state solutions that we would like to preserve exactly. Here we require that, for the steady state

solution (4.17), ajðu; xÞ ¼
P

k
bk ukþpjðxÞ
qjðxÞ

, where u = (u1, . . . ,um), bk are arbitrary constants, and pj(x) and qj(x) are

arbitrary known functions of x. We would then still aim for decomposing each component of the source term
in the form of (4.3), where sj could be arbitrary functions of a1(u,x), . . . ,am(u,x), and the functions sj and tj

could be different for different components of the source vector. The remaining procedure is then the same
as that for the scalar case and we again obtain well-balanced high order WENO schemes. Examples of such
systems will be given in Section 6. We should also mention that local characteristic decomposition is typically
used in high order WENO schemes in order to obtain better non-oscillatory property for strong discontinu-
ities. When reconstructing the point value at xiþ1

2
, the local characteristic matrix R, consisting of the right

eigenvectors of the Jacobian at uiþ1
2
, is a constant matrix for fixed i. Hence this characteristic decomposition

procedure does not alter the argument presented above for the scalar case.
5. Construction of well-balanced discontinuous Galerkin schemes

In this section, we generalize the idea used in Section 4 to RKDG schemes. A well-balanced high order
RKDG scheme will be designed for a class of conservation laws satisfying Assumptions 4.1 and 4.2. The basic
idea is the same as that for the finite volume schemes, such as the technique of decomposing the source term
and replacing the viscosity term in the numerical fluxes. We start with the description in the scalar case.

Consider now Eq. (1.2). Following the description in Section 3, the semi-discrete DG scheme for (1.2) is
Z
Ij

otuhðx; tÞvhðxÞ dx�
Z

Ij

f ðuhðx; tÞÞoxvhðxÞ dxþ f̂ jþ1
2
vhðx�jþ1

2
Þ � f̂ j�1

2
vhðxþj�1

2
Þ ¼

Z
Ij

gðuhðx; tÞ; tÞvhðxÞ dx; ð5:1ÞZ
Ij

uhðx;0ÞvhðxÞ dx¼
Z

Ij

u0ðxÞvhðxÞ dx. ð5:2Þ
First, we define a high order approximation ahðuh; xÞ ¼ uhþph
qh

to a(uh,x), where ph and qh are L2 projections of p

and q into Vh, see (5.2) for such a projection. Now assume that u is the steady state solution satisfying (4.2), namely
uðxÞ þ pðxÞ ¼ cqðxÞ

for some constant c, and uh is the L2 projection of this steady state solution. Clearly, since the L2 projection is
a linear operator,
uhðxÞ þ phðxÞ ¼ cqhðxÞ

for the same constant c at every point x. This implies
ahðuh; xÞ ¼
uhðxÞ þ phðxÞ

qhðxÞ
¼ c
for the same constant c.
For such steady state solution u satisfying Assumptions 4.1 and 4.2, we have
d

dx
f ðu; xÞ �

X
j

sjðaðu; xÞÞtjðxÞ
 !

¼ 0.
We would need to suitably choose a function (tj)h, which should be a high order approximation to tj and
should satisfy the condition
f ðuhðxÞÞ �
X

j

sjðahðuhðxÞ; xÞÞðtjÞhðxÞ ¼ constant ð5:3Þ
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for all x. The construction of (tj)h follows a similar procedure as that for the construction of ðtjÞ�iþ1
2

for the finite
volume well-balanced scheme in Section 4. We will describe in detail the construction of (tj)h for each appli-
cation case in Section 6.

Similar to the decomposition of the source term in the well-balanced finite volume schemes (4.9), we decom-
pose the integral of the source term on the right-hand side of (5.1) as:
Z

I i

gðuh; xÞvh dx ¼
X

j

1

2
sjðaðuh; xÞþi�1

2
Þ þ sjðaðuh; xÞ�iþ1

2
Þ

� �Z
Ii

t0jðxÞvh dx
�

þ
Z

I i

sjðaðuh; xÞÞ �
1

2
sjðaðuh; xÞþi�1

2
Þ þ sjðaðuh; xÞ�iþ1

2
Þ

� �� �
t0jðxÞvh dx

�

¼
X

j

1

2
sjðaðuh; xÞþi�1

2
Þ þ sjðaðuh; xÞ�iþ1

2
Þ

� �
tjðxiþ1

2
Þvhðx�iþ1

2
Þ � tjðxi�1

2
Þvh xþ

i�1
2

� ���

�
Z

I i

tjðxÞv0hðxÞ dx
�
þ
Z

I i

sjðaðuh; xÞÞ �
1

2
sjðaðuh; xÞþi�1

2
Þ þ sjðaðuh; xÞ�iþ1

2
Þ

� �� �
t0jðxÞvh dx
We then replace this source term with a high order approximation of it given by
X
j

1

2
sjðahðuh; xÞþi�1

2
Þ þ sjðahðuh; xÞ�iþ1

2
Þ

� �
ð̂tjÞh;iþ1

2
vh x�iþ1

2

� �
� ð̂tjÞh;i�1

2
vh xþ

i�1
2

� �
�
Z

I i

ðtjÞhðxÞv0hðxÞ dx
� ��

þ
Z

Ii

sjðahðuh; xÞÞ �
1

2
sj ahðuh; xÞþi�1

2

� �
þ sj ahðuh; xÞ�iþ1

2

� �� �� �
ðt0jÞhðxÞvh dx

�
; ð5:4Þ
where ð̂tjÞh;iþ1
2

is a high order approximation to tjðxiþ1
2
Þ, whose definition will be described below.

To deal with the ‘‘hat’’ terms (numerical fluxes and approximations to tjðxiþ1
2
Þ), we use the relation between

the finite volume schemes and the DG schemes. If we simply take the test function vh in the DG scheme as the
constant function 1, we obtain the evolution of the cell averages similar to that for a finite volume scheme. We
have already explained the construction of the ‘‘hat’’ terms for well-balanced finite volume schemes. Here we
simply copy those definitions (4.14) and (4.16) from Section 4 without further explanation
f̂ iþ1
2
¼ 1

2
f ððuhÞ�iþ1

2
Þ þ f ððuhÞþiþ1

2
Þ � a sign ðqðxÞÞ ahðuh; xÞþiþ1

2
� ahðuh; xÞ�iþ1

2

� �h i
;

ð̂tjÞh;iþ1
2
¼ 1

2
ðtjÞhðx�iþ1

2
Þ þ ðtjÞhðxþiþ1

2
Þ

h i
.

A combination of the above equations gives the final version of our well-balanced high order RKDG schemes
if one more modification on the slope limiter procedure is provided. Usually, we perform the limiter on the
function uh after each Runge–Kutta stage. Now, our purpose is to maintain the steady state solution u which
satisfies a(u,x) = constant. The above limiter procedure could destroy the preservation of such steady state,
since if the limiter is enacted, the resulting modified solution uh may no longer satisfy ah(uh,x) = constant.
We therefore propose to first check whether any limiting is needed based on the function ah(uh,x) in each
Runge–Kutta stage, where the cell averages of ah(uh,x) (needed to implement the TVB limiter) are computed
by a suitable Gauss quadrature. If a certain cell is flagged by this procedure needing limiting, then the actual
limiter is implemented on uh, not on ah(uh,x). When the limiting procedure is implemented this way, if the stea-
dy state u satisfying a(u,x) = constant is reached, no cell will be flagged as requiring limiting since ah(uh,x) is
equal to the same constant, hence uh will not be limited and therefore the steady state is preserved.

It is easy to compute the remaining integrals because uh, (tj)h and vh are all piecewise polynomials in the
space Vh. This finishes the description of the RKDG schemes. We can clearly observe that the accuracy is
maintained. We also state below the proposition claiming the exact preservation of the steady state solution
(4.2). The proof is similar to that of Proposition 4.3 for the finite volume schemes, and is therefore omitted.

Proposition 5.1. The RKDG schemes as stated above are exact for steady state solutions satisfying (4.2) and can

maintain the original high order accuracy for general solutions.

The extension of the well-balanced high order RKDG schemes to the system case follows the same idea as
that for the well-balanced finite volume schemes.
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6. Applications

In this section, we give several examples from applications which fall into the category of balance laws
considered in the previous sections, and present well-balanced high order finite volume WENO and discon-
tinuous Galerkin schemes for them. Due to page limitation, only selected numerical results are shown to
give a glimpse of how these methods work. Fifth order finite volume WENO scheme and third order finite
element RKDG scheme are implemented as examples. In all numerical tests, time discretization is by the
third order TVD Runge–Kutta method in [30]. For finite volume WENO schemes, the CFL number is
taken as 0.6, except for the accuracy tests where smaller time steps are taken to ensure that spatial errors
dominate. For the third order RKDG scheme, the CFL number is 0.18. For the TVB limiter implemented
in the RKDG scheme, the TVB constant M (see [28,8] for its definition) is taken as 0 in most numerical
examples, unless otherwise stated.

6.1. One dimensional shallow water equations

The shallow water equations have wide applications in ocean and hydraulic engineering and river, reservoir,
and open channel flows, among others. We consider the system with a geometrical source term due to the bot-
tom topology. In one space dimension, the equations take the form
ht þ ðhuÞx ¼ 0;

ðhuÞt þ hu2 þ 1
2
gh2

� �
x
¼ �ghbx;

(
ð6:1Þ
where h denotes the water height, u is the velocity of the fluid, b represents the given bottom topography and g

is the gravitational constant.
The steady state solution we are interested in preserving satisfies (4.17) in the form
a1 � hþ b ¼ constant; a2 � u ¼ 0.
The first component of the source term is 0. A decomposition of the second component of the source term in
the form of (4.3) is
�ghbx ¼ �gðhþ bÞbx þ
1

2
gðb2Þx;
i.e., s1 = s1(a1) = �g(h + b), s2 ¼ 1
2
g, t1(x) = b(x), and t2(x) = b2(x). For the finite volume schemes, we apply

the WENO reconstruction to the function (b(x), 0)T, with coefficients computed from (h,hu)T, to obtain
b�iþ1

2
. We define
ðt1Þ�iþ1
2
¼ b�iþ1

2
; ðt2Þ�iþ1

2
¼ b�iþ1

2

� �2

.

Under these definitions and if the steady state h + b = c, u = 0 is reached, we have
f ðu�iþ1
2
Þ �

X
j

sj aðu; xÞ�iþ1
2

� �
ðtjÞ�iþ1

2
¼ 1

2
g h�iþ1

2

� �2

� 1

2
g b�iþ1

2

� �2

þ g
1

2
h�iþ1

2
þ b�iþ1

2
þ hþi�1

2
þ bþi�1

2

� �
b�iþ1

2

¼ 1

2
g h�iþ1

2
þ b�iþ1

2

� �
h�iþ1

2
� b�iþ1

2

� �
þ gcb�iþ1

2
¼ 1

2
gc h�iþ1

2
� b�iþ1

2
þ 2b�iþ1

2

� �
¼ 1

2
g c2;
which is a constant. A similar manipulation leads to
f ðuþ
iþ1

2
Þ �

X
j

sj aðu; xÞþiþ1
2

� �
ðtjÞþiþ1

2
¼ 1

2
gc2.
For the RKDG method, we define
ðt1ÞhðxÞ ¼ bhðxÞ; ðt2ÞhðxÞ ¼ ðbhðxÞÞ2;
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where bh(x) is the L2 projection of b(x) to the finite element space Vh. A similar manipulation as in the finite
volume case leads to
Table
L1 and

FV

RKDG
f ðuhÞ �
X

j

sjðahðuh; xÞÞðtjÞh ¼
1

2
gc2
when the steady state h + b = c, u = 0 is reached, satisfying our requirement.
Next, we provide numerical results to demonstrate the good properties of the well-balanced finite volume

WENO and finite element RKDG schemes when applied to the one dimensional shallow water equations. The
gravitation constant g is taken as 9.812 m/s2 during the computation.

6.1.1. Test for the exact C-property
The purpose of the first test problem is to verify that the schemes indeed maintain the exact C-property over

a non-flat bottom. We choose two different functions for the bottom topography given by (0 6 x 6 10):
bðxÞ ¼ 5e�
2
5ðx�5Þ2 ; ð6:2Þ
which is smooth, and
bðxÞ ¼
4 if 4 6 x 6 8;

0 otherwise;

�
ð6:3Þ
which is discontinuous. The initial data are the stationary solution:
hþ b ¼ 10; hu ¼ 0.
This steady state should be exactly preserved. We compute the solution until t = 0.5 using N = 200 uniform
cells. In order to demonstrate that the exact C-property is indeed maintained up to round-off error, we use
single precision, double precision and quadruple precision to perform the computation, and show the L1

and L1 errors for the water height h (note: h in this case is not a constant function!) and the discharge
hu in Tables 1 and 2 for the two bottom functions (6.2) and (6.3) and different precisions. For the RKDG
method, the errors are computed based on the numerical solutions at cell centers. We can clearly see that
the L1 and L1 errors are at the level of round-off errors for different precisions, verifying the exact
C-property.

We have also computed stationary solutions using initial conditions which are not the steady state solutions
and letting time evolve into a steady state, obtaining similar results with the exact C-property.

6.1.2. Testing the orders of accuracy

In this example we will test the high order accuracy of our schemes for a smooth solution. There are some
known exact solutions to the shallow water equation with non-flat bottom in the literature, such as some sta-
tionary solutions, but they are not generic test cases for accuracy. We have therefore chosen to use the follow-
ing bottom function and initial conditions:
bðxÞ ¼ sin2ðpxÞ; hðx; 0Þ ¼ 5þ ecosð2pxÞ; ðhuÞðx; 0Þ ¼ sinðcosð2pxÞÞ; x 2 ½0; 1�
1
L1 errors for different precisions for the stationary solution with a smooth bottom (6.2)

Precision L1 error L1 error

h hu h hu

Single 4.07E � 06 3.75E � 05 1.33E � 05 1.33E � 04
Double 2.50E � 14 2.23E � 13 7.64E � 14 7.97E � 13
Quadruple 3.49E � 33 2.90E � 32 1.39E � 32 9.62E � 32

Single 6.44E � 06 2.44E � 05 2.57E � 05 1.75E � 04
Double 6.82E � 15 2.90E � 14 2.84E � 14 2.14E � 13
Quadruple 9.06E � 31 3.92E � 33 8.05E � 29 1.12E � 31



Table 2
L1 and L1 errors for different precisions for the stationary solution with a nonsmooth bottom (6.3)

Precision L1 error L1 error

h hu h hu

FV Single 6.50E � 06 2.61E � 05 1.91E � 05 1.53E � 04
Double 1.73E � 14 5.88E � 14 4.62E � 14 2.43E � 13
Quadruple 2.69E � 32 9.30E � 32 5.85E � 32 3.04E � 31

RKDG Single 5.76E � 07 3.54E � 07 9.54E � 07 1.18E � 06
Double 1.41E � 15 8.90E � 16 3.55E � 15 2.83E � 15
Quadruple 2.69E � 31 1.62E � 35 8.06E � 29 8.18E � 34
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with periodic boundary conditions, see [35]. Since the exact solution is not known explicitly for this case, we
use the fifth order finite volume WENO scheme with N = 12,800 cells to compute a reference solution, and
treat this reference solution as the exact solution in computing the numerical errors. We compute up to
t = 0.1 when the solution is still smooth (shocks develop later in time for this problem). Table 3 contains
the L1 errors for the cell averages and numerical orders of accuracy for the finite volume and RKDG schemes,
respectively. We can clearly see that fifth order accuracy is achieved for the WENO scheme, and third order
accuracy is achieved for the RKDG scheme. For the RKDG scheme, the TVB constant M is taken as 32.
Notice that the CFL number we have used for the finite volume scheme decreases with the mesh size and
is recorded in Table 3. For the RKDG method, the CFL number is fixed at 0.18.

6.1.3. A small perturbation of a steady state water

The following quasi-stationary test case was proposed by LeVeque [21]. It was chosen to demonstrate the
capability of the proposed scheme for computations on a rapidly varying flow over a smooth bed, and the
perturbation of a stationary state.

The bottom topography consists of one hump:
Table
L1 erro

No. of

25
50

100
200
400
800
bðxÞ ¼
0:25ðcosð10pðx� 1:5ÞÞ þ 1Þ if 1:4 6 x 6 1:6;

0 otherwise.

�
ð6:4Þ
The initial conditions are given with
ðhuÞðx; 0Þ ¼ 0 and hðx; 0Þ ¼
1� bðxÞ þ � if 1:1 6 x 6 1:2;

1� bðxÞ otherwise;

�
ð6:5Þ
where � is a non-zero perturbation constant. Two cases have been run: � = 0.2 (big pulse) and � = 0.001 (small
pulse). Theoretically, for small �, this disturbance should split into two waves, propagating left and right at the
characteristic speeds �

ffiffiffiffiffi
gh
p

. Many numerical methods have difficulty with the calculations involving such
small perturbations of the water surface [21]. Both sets of initial conditions are shown in Fig. 1. The solution
at time t = 0.2 s for the big pulse � = 0.2, obtained on a 200 cell uniform grid with simple transmissive bound-
ary conditions, and compared with a 3000 cell solution, is shown in Fig. 2 for the FV scheme and in Fig. 4 for
3
rs and numerical orders of accuracy for the example in Section 6.1.2

cells FV schemes RKDG schemes

CFL h hu h hu

L1 error Order L1 error Order L1 error Order L1 error Order

0.6 1.48E � 02 9.45E � 02 2.35E � 03 2.12E � 02
0.6 2.40E � 03 2.63 1.98E � 02 2.26 1.15E � 04 4.36 1.01E � 03 4.39
0.4 2.97E � 04 3.01 2.58E � 03 2.93 1.24E � 05 3.20 1.09E � 04 3.21
0.3 2.43E � 05 3.61 2.13E � 04 3.60 1.02E � 06 3.59 8.97E � 06 3.60
0.2 1.02E � 06 4.57 8.96E � 06 4.57 1.11E � 07 3.19 9.79E � 07 3.19
0.1 3.26E � 08 4.97 2.85E � 07 4.97 1.30E � 08 3.09 1.14E � 07 3.08
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Fig. 1. The initial surface level h + b and the bottom b for a small perturbation of a steady state water. Left: a big pulse � = 0.2; right: a
small pulse � = 0.001.
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the RKDG scheme. The results for the small pulse � = 0.001 are shown in Figs. 3 and 5. For this small pulse
problem, we take e = 10�9 in the WENO weight formula (2.5), such that it is smaller than the square of the
perturbation. At this time, the downstream-traveling water pulse has already passed the bump. We can clearly
see that there are no spurious numerical oscillations.

6.1.4. The dam breaking problem over a rectangular bump

In this example we simulate the dam breaking problem over a rectangular bump, which involves a rapidly
varying flow over a discontinuous bottom topography. This example was used in [33].

The bottom topography takes the form:
Fig. 2.
bðxÞ ¼
8 if jx� 750j 6 1500=8;

0 otherwise

�
ð6:6Þ
for x 2 [0,1500]. The initial conditions are
ðhuÞðx; 0Þ ¼ 0 and hðx; 0Þ ¼
20� bðxÞ if x 6 750;

15� bðxÞ otherwise.

�
ð6:7Þ
FV scheme: small perturbation of a steady state water with a big pulse. t = 0.2 s. Left: surface level h + b; right: the discharge hu.



Fig. 4. RKDG scheme: small perturbation of a steady state water with a big pulse. t = 0.2 s. Left: surface level h + b; right: the discharge
hu.

Fig. 3. FV scheme: small perturbation of a steady state water with a small pulse. t = 0.2 s. Left: surface level h + b; right: the discharge hu.
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The numerical results obtained by the FV scheme with 400 uniform cells (and a comparison with the results
using 4000 uniform cells) are shown in Figs. 6 and 7, with two different ending time t = 15 s and t = 60 s. Figs.
8 and 9 demonstrate the numerical results by the RKDG scheme, with the same number of uniform cells. In
this example, the water height h(x) is discontinuous at the points x = 562.5 and x = 937.5, while the surface
level h(x) + b(x) is smooth there. Both schemes work well for this example, giving well resolved, non-oscilla-
tory solutions using 400 cells which agree with the converged results using 4000 cells.

6.1.5. Steady flow over a hump

The purpose of this test case is to study the convergence in time towards steady flow over a bump. These are
classical test problems for transcritical and subcritical flows, and they are widely used to test numerical
schemes for shallow water equations. For example, they have been considered by the working group on

dam break modelling [12], and have been used as test cases in, e.g. [32].



Fig. 5. RKDG scheme: small perturbation of a steady state water with a small pulse. t = 0.2 s. Left: surface level h + b; right: the discharge
hu.

Fig. 6. FV scheme: The surface level h + b for the dam breaking problem at time t = 15 s. Left: the numerical solution using 400 grid cells,
plotted with the initial condition and the bottom topography; right: the numerical solution using 400 and 4000 grid cells.
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The bottom function is given by:
bðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12;

0 otherwise

(
ð6:8Þ
for a channel of length 25 m. The initial conditions are taken as
hðx; 0Þ ¼ 0:5� bðxÞ and uðx; 0Þ ¼ 0.
Depending on different boundary conditions, the flow can be subcritical or transcritical with or without a stea-
dy shock. The computational parameters common for all three cases are: uniform mesh size Dx = 0.125 m,
ending time t = 200 s. Analytical solutions for the various cases are given in [12].

(a) Transcritical flow without a shock.
� upstream: The discharge hu = 1.53 m2/s is imposed.
� downstream: The water height h = 0.66 m is imposed when the flow is subcritical.



Fig. 7. FV scheme: The surface level h + b for the dam breaking problem at time t = 60 s. Left: the numerical solution using 400 grid cells,
plotted with the initial condition and the bottom topography; right: the numerical solution using 400 and 4000 grid cells.

Fig. 8. RKDG scheme: The surface level h + b for the dam breaking problem at time t = 15 s. Left: the numerical solution using 400 grid
cells, plotted with the initial condition and the bottom topography; right: the numerical solution using 400 and 4000 grid cells.
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The surface level h + b and the discharge hu, as the numerical flux for the water height h in Eq. (6.1), are
plotted in Figs. 10 and 11, which show very good agreement with the analytical solution. The correct capturing
of the discharge hu is usually more difficult than the surface level h + b, as noticed by many authors. The
numerical errors for the discharge hu of our well-balanced finite volume WENO and RKDG schemes are both
very small.

(b) Transcritical flow with a shock.
� upstream: The discharge hu = 0.18 m2/s is imposed.
� downstream: The water height h = 0.33 m is imposed.

In this case, the Froude number Fr ¼ u=
ffiffiffiffiffi
gh
p

increases to a value larger than one above the bump, and then
decreases to less than one. A stationary shock can appear on the surface. The surface level h + b and the
discharge hu, as the numerical flux for the water height h in Eq. (6.1), are plotted in Fig. 12 and 14, which



Fig. 9. RKDG scheme: The surface level h + b for the dam breaking problem at time t = 60 s. Left: the numerical solution using 400 grid
cells, plotted with the initial condition and the bottom topography; right: the numerical solution using 400 and 4000 grid cells.

Fig. 10. FV scheme: steady transcritical flow over a bump without a shock. Left: the surface level h + b; right: the discharge hu as the
numerical flux for the water height h.
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show non-oscillatory results in good agreement with the analytical solution. In Figs. 13 and 15, we compare
the pointwise errors of the numerical solutions obtained with 200 and 400 uniform cells. We have also per-
formed such error comparisons for the cases of the transcritical flow without a shock and of the subcritical
flow, obtaining qualitatively similar results. We have therefore omitted them to save space.

(c) Subcritical flow.
� upstream: The discharge hu = 4.42 m2/s is imposed.
� downstream: The water height h = 2 m is imposed.

This is a subcritical flow. The surface level h + b and the discharge hu, as the numerical flux for the water
height h in Eq. (6.1), are plotted in Figs. 16 and 17, which are in good agreement with the analytical
solution.



Fig. 11. RKDG scheme: steady transcritical flow over a bump without a shock. Left: the surface level h + b; right: the discharge hu as the
numerical flux for the water height h.

Fig. 12. FV scheme: steady transcritical flow over a bump with a shock. Left: the surface level h + b; right: the discharge hu as the
numerical flux for the water height h.
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6.2. Two dimensional shallow water equations

The shallow water system in two space dimensions takes the form:
ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1
2
gh2

� �
x
þ ðhuvÞy ¼ �ghbx;

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2
gh2

� �
y
¼ �ghby ;

8>><
>>: ð6:9Þ
where again h is the water height, (u,v) is the velocity of the fluid, b represents the bottom topography and g is
the gravitational constant.

We are interested in preserving the still water solution, which takes the form (satisfying (4.17))
a1 � hþ b ¼ constant; a2 � u ¼ 0; a3 � v ¼ 0.



Fig. 14. RKDG scheme: steady transcritical flow over a bump with a shock. Left: the surface level h + b; right: the discharge hu as the
numerical flux for the water height h.

Fig. 13. FV scheme: steady transcritical flow over a bump with a shock. Pointwise error comparison between numerical solutions using
200 and 400 cells. Left: the surface level h + b; right: the discharge hu as the numerical flux for the water height h.
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The first component of the source term is 0. Similarly as in one dimensional case, we decompose the second
and third components of the source term as
�ghbx ¼ �gðhþ bÞbx þ
1

2
g b2
� �

x
; �ghby ¼ �gðhþ bÞby þ

1

2
g b2
� �

y
;

i.e., s1 = s1(a1) = �g(h + b), s2 ¼ 1
2
g, t1(x) = b(x), t2(x) = b2(x) for the second component, and s1 = s1(a1) =

�g(h + b), s2 ¼ 1
2
g, t1(x) = b(x), t2(x) = b2(x) for the third component.

For the finite volume scheme, we apply the WENO reconstruction to the function (b(x), 0,0)T, with coef-
ficients computed from (h,hu,hv)T, to obtain b�iþ1

2;j
and b�i;jþ1

2
. We define, for the source term of the second

equation,
ðt1Þ�iþ1
2;j
¼ b�iþ1

2;j
; ðt2Þ�iþ1

2;j
¼ b�iþ1

2;j

� �2

;

and, for the source term of the third equation,



Fig. 15. RKDG scheme: steady transcritical flow over a bump with a shock. Pointwise error comparison between numerical solutions
using 200 and 400 cells. Left: the surface level h + b; right: the discharge hu as the numerical flux for the water height h.

Fig. 16. FV scheme: steady subcritical flow over a bump. Left: the surface level h + b; right: the discharge hu as the numerical flux for the
water height h.
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ðt1Þ�i;jþ1
2
¼ b�i;jþ1

2
; ðt2Þ�i;jþ1

2
¼ b�i;jþ1

2

� �2

.

We can verify, similar to the one dimensional case, that these choices of t�j will maintain the requirement for
the steady state solution satisfying h + b = c, u = v = 0.

For the RKDG method, we define
ðt1Þhðx; yÞ ¼ bhðx; yÞ; ðt2Þhðx; yÞ ¼ ðbhðx; yÞÞ2;

where bh(x,y) is the L2 projection of b(x,y) to the finite element space Vh, for the source terms of both the
second and the third equations.

We now show numerical examples to demonstrate the behavior of our well-balanced schemes for the two
dimensional shallow water equations.



Fig. 17. RKDG scheme: steady subcritical flow over a bump. Left: the surface level h + b; right: the discharge hu as the numerical flux for
the water height h.
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6.2.1. Test for the exact C-property in two dimensions

This example is used to check that our schemes indeed maintain the exact C-property over a non-flat bot-
tom. The two dimensional hump
Table
L1 erro

FV

RKDG
bðx; yÞ ¼ 0:8e�50ððx�0:5Þ2þðy�0:5Þ2Þ; x; y 2 ½0; 1� ð6:10Þ

is chosen to be the bottom. h(x,y, 0) = 1�b(x,y) is the initial depth of the water. Initial velocity is set to be
zero. This surface should remain flat. The computation is performed to t = 0.1 using single, double and qua-
druple precisions with a 100 · 100 uniform mesh. Table 4 contains the L1 errors for the water height h (which
is not a constant function) and the discharges hu and hv for both schemes. We can clearly see that the L1 errors
are at the level of round-off errors for different precisions, verifying the exact C-property.

6.2.2. Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the schemes are applied to the following
two dimensional problem. The bottom topography and the initial data are given by:
bðx; yÞ ¼ sinð2pxÞ þ cosð2pyÞ; hðx; y; 0Þ ¼ 10þ esinð2pxÞ cosð2pyÞ;
ðhuÞðx; y; 0Þ ¼ sinðcosð2pxÞÞ sinð2pyÞ; ðhvÞðx; y; 0Þ ¼ cosð2pxÞ cosðsinð2pyÞÞ
defined over a unit square, with periodic boundary conditions. The terminal time is taken as t = 0.05 to avoid
the appearance of shocks in the solution. Since the exact solution is also not known explicitly for this case, we
use the same fifth order WENO scheme with an extremely refined mesh consisting of 1600 · 1600 cells to
4
rs for different precisions for the stationary solution in Section 6.2.1

Precision L1 error

h hu hv

Single 1.09E � 06 8.87E � 07 8.87E � 07
Double 8.16E � 16 9.31E � 16 8.47E � 16
Quadruple 7.30E � 34 7.31E � 34 7.34E � 34

Single 9.40E � 08 3.58E � 07 3.60E � 07
Double 6.20E � 17 1.14E � 15 1.16E � 15
Quadruple 5.87E � 34 8.35E � 34 8.36E � 34
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compute a reference solution, and treat this reference solution as the exact solution in computing the numer-
ical errors. The TVB constant M in the limiter for the RKDG scheme is taken as 40 here. Tables 5 and 6 con-
tain the L1 errors and orders of accuracy for the cell averages. We can clearly see that, in this two dimensional
test case, fifth order accuracy is achieved for the finite volume WENO scheme and third order accuracy is
achieved for the RKDG scheme.

6.2.3. A small perturbation of a two dimensional steady state water

This is a classical example to show the capability of the proposed scheme for the perturbation of the
stationary state, given by LeVeque [21]. It is analogous to the test done previously in Section 6.1.3 in one
dimension.

We solve the system in the rectangular domain [0,2] · [0,1]. The bottom topography is an isolated elliptical
shaped hump:
Table
FV sch

Numb

25 · 25
50 · 50
100 · 1
200 · 2
400 · 4
800 · 8

Table
RKDG

Numb

25 · 25
50 · 50
100 · 1
200 · 2
400 · 4
800 · 8
bðx; yÞ ¼ 0:8e�5ðx�0:9Þ2�50ðy�0:5Þ2 . ð6:11Þ

The surface is initially given by:
hðx; y; 0Þ ¼
1� bðx; yÞ þ 0:01 if 0:05 6 x 6 0:15;

1� bðx; yÞ otherwise;

�
huðx; y; 0Þ ¼ hvðx; y; 0Þ ¼ 0.

ð6:12Þ
So the surface is almost flat except for 0.05 6 x 6 0.15, where h is perturbed upward by 0.01. Figs. 18 and 19
display the right-going disturbance as it propagates past the hump, on two different uniform meshes with
200 · 100 cells and 600 · 300 cells for comparison. The surface level h + b is presented at different times.
The results indicate that both schemes can resolve the complex small features of the flow very well.

6.3. Elastic wave equation

We consider the propagation of compressional waves [1,34] in an one dimensional elastic rod with a given
media density q(x). The equations of motion in a Lagrangian frame are given by the balance laws:
ðqeÞt þ ð�quÞx ¼ �u dq
dx ;

ðquÞt þ ð�rÞx ¼ 0;

(
ð6:13Þ
5
eme: L1 errors and numerical orders of accuracy for the example in Section 6.2.2

er of cells CFL h hu hv

L1 error Order L1 error Order L1 error Order

0.6 7.91E � 03 2.12E � 02 6.52E � 02
0.6 1.13E � 03 2.81 2.01E � 03 3.40 9.23E � 03 2.82

00 0.6 8.89E � 05 3.66 1.25E � 04 4.00 7.19E � 04 3.68
00 0.4 4.07E � 06 4.45 5.19E � 06 4.59 3.30E � 05 4.45
00 0.3 1.42E � 07 4.84 1.84E � 07 4.82 1.16E � 06 4.84
00 0.2 4.38E � 09 5.02 5.99E � 09 4.94 3.63E � 08 4.99

6
scheme: L1 errors and numerical orders of accuracy for the example in Section 6.2.2

er of cells h hu hv

L1 error Order L1 error Order L1 error Order

2.45E � 03 1.36E � 02 2.05E � 02
5.73E � 04 2.10 2.92E � 03 2.22 4.75E � 03 2.11

00 1.06E � 04 2.43 5.31E � 04 2.46 8.51E � 04 2.48
00 1.71E � 05 2.63 8.82E � 05 2.59 1.39E � 04 2.61
00 2.52E � 06 2.76 1.32E � 05 2.74 2.10E � 05 2.73
00 3.52E � 07 2.84 1.89E � 06 2.80 3.01E � 06 2.81
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Fig. 18. FV scheme: The contours of the surface level h + b for the problem in Section 6.2.3. 30 uniformly spaced contour lines. From top
to bottom: at time t = 0.12 from 0.99942 to 1.00656; at time t = 0.24 from 0.99318 to 1.01659; at time t = 0.36 from 0.98814 to 1.01161; at
time t = 0.48 from 0.99023 to 1.00508; and at time t = 0.6 from 0.99514 to 1.00629. Left: results with a 200 · 100 uniform mesh. Right:
results with a 600 · 300 uniform mesh.
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Fig. 19. RKDG scheme: The contours of the surface level h + b for the problem in Section 6.2.3. 30 uniformly spaced contour lines. From
top to bottom: at time t = 0.12 from 0.99942 to 1.00656; at time t = 0.24 from 0.99318 to 1.01659; at time t = 0.36 from 0.98814 to
1.01161; at time t = 0.48 from 0.99023 to 1.00508; and at time t = 0.6 from 0.99514 to 1.00629. Left: results with a 200 · 100 uniform
mesh. Right: results with a 600 · 300 uniform mesh.
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where e = e(x, t) is the strain, u = u(x, t) is the velocity and r is a given stress–strain relationship r(e,x). The
equation of linear acoustics can be obtained from the elasticity problem if the stress–strain relationship is
linear,
rðe; xÞ ¼ KðxÞe;

where K(x) is the given bulk modulus of compressibility.

The steady state we are interested to preserve for this problem is characterized by
a1 � rðe; xÞ ¼ constant; a2 � u ¼ constant
which is of the form (4.17). The second component of the source term is 0. The first component of the source
term is already in the form of (4.3) with s1 ¼ s1ða2Þ ¼ �u ¼ �qu

q and t1 = q(x).
For finite volume schemes, we apply the WENO reconstruction to the function (0,q(x))T, with coefficients

computed from (qe,qu)T, to obtain q�
iþ1

2
. We then define ðt1Þ�iþ1

2
¼ q�

iþ1
2
, which leads to
f ðu�iþ1
2
Þ �

X
j

sjðaðu; xÞ�iþ1
2
ÞðtjÞ�iþ1

2
¼ �ðquÞ�iþ1

2
þ
ðquÞ�iþ1

2

q�
iþ1

2

q�iþ1
2
¼ 0;
satisfying our requirement. For the RKDG scheme, we define
ðt1ÞhðxÞ ¼ qhðxÞ;

where qh(x) is the L2 projection of q(x) to the finite element space Vh. We can then easily verify the
requirement
f ðuhÞ �
X

j
sjðahðuh; xÞÞðtjÞh ¼ 0
for the steady state solution.
Next, we present the numerical result for a linear acoustic test [1]. The properties of the media are given by
cðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
KðxÞ
qðxÞ

s
¼ 1þ 0:5 sinð10pxÞ; ZðxÞ ¼ qðxÞcðxÞ ¼ 1þ 0:25 cosð10pxÞ.
The initial conditions are given by
qeðx; 0Þ ¼
�1:75þ0:75 cosð10pxÞ

c2ðxÞ if 0:4 < x < 0:6;

�1
c2ðxÞ otherwise;

(
uðx; 0Þ ¼ 0.
It is a test case where the impedance Z(x) and hence the eigenvectors are both spatially varying. We perform
the computation with 200 uniform cells, with the ending time t = 0.4 s. An ‘‘exact’’ reference solution is com-
puted with the same scheme over a 2000 uniform cells. The simulation results are shown in Fig. 20. The
numerical resolution shows very good agreement with the ‘‘exact’’ reference solution.

6.4. Chemosensitive movement

Originated from biology, chemosensitive movement [11,15] is a process by which cells change their direction
reacting to the presence of a chemical substance, approaching chemically favorable environments and avoid-
ing unfavorable ones. Hyperbolic models for chemotaxis are recently introduced [15] and take the form
nt þ ðnuÞx ¼ 0;

ðnuÞt þ ðnu2 þ nÞx ¼ nv0ðcÞ oc
ox� rnu;

(
ð6:14Þ
where the chemical concentration c = c(x, t) is given by the parabolic equation
oc
ot
� DcDc ¼ n� c.
Here, n(x, t) is the cell density, nu(x, t) is the population flux and r is the friction coefficient.



Fig. 20. The numerical (symbols) and the ‘‘exact’’ reference (solid line) stress r(x) at time t = 0.4 s. Left: FV schemes; right: RKDG
schemes.
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We would like to preserve the steady state solution to (6.14) with a zero population flux, which satisfies
nv0ðcÞcx � nx ¼ 0; nu ¼ 0; ð6:15Þ
where c = c(x) does not depend on t in steady state. The first equality above does not seem to be of the form
(4.17). However, (6.15) is equivalent to
a1 �
n

evðcÞ ¼ constant; a2 � nu ¼ 0;
which is clearly in the form of (4.17). The first component of the source term is 0. A decomposition of the
second component of the source term in the form of (4.3) is
nv0ðcÞ oc
ox
� rnu ¼ n

evðcÞ
d

dx
evðcÞ � rnu;
i.e., s1 ¼ s1ða1Þ ¼ n
evðcÞ, s2 = s2(a2) = rnu, t1(x) = ev(c(x)), and t2(x) = x.

For the finite volume scheme, we apply the WENO reconstruction to the function (ev(c(x)), 0)T, with coeffi-
cients computed from (n,nu)T, to obtain ðevðcðxÞÞÞ�iþ1

2
. We define
ðt1Þ�iþ1
2
¼ ðevðcðxÞÞÞ�iþ1

2
; ðt2Þ�iþ1

2
¼ xiþ1

2
.

In the case of steady state,
f ðu�iþ1
2
Þ �

X
j

sjðaðu; xÞ�iþ1
2
ÞðtjÞ�iþ1

2
¼ n�iþ1

2
�

n�
iþ1

2

ðevðcðxÞÞÞ�iþ1
2

ðevðcðxÞÞÞ�iþ1
2
¼ 0;
which satisfies our requirement. For the RKDG scheme, we define
ðt1ÞhðxÞ ¼ ðevðcðxÞÞÞh; ðt2ÞhðxÞ ¼ x;
where (ev(c(x)))h is the L2 projection of ev(c(x)) to the finite element space Vh. A similar manipulation as in the
finite volume case leads to
f ðuhÞ �
X

j

sjðahðuh; xÞÞðtjÞh ¼ 0.
Our technique can also be applied to the two dimensional case of this application.
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We give an numerical example here to test the high order accuracy for smooth solutions for our schemes.
The initial conditions are taken as
Table
L1 erro

No. of

20
40
80

160
320
640
nðx; 0Þ ¼ 1þ 0:2 cosðpxÞ; uðx; 0Þ ¼ 0; x 2 ½�1; 1�

with
cðxÞ ¼ e�16x2

; vðcÞ ¼ logð1þ cÞ; r ¼ 0
with a periodic boundary condition. Since the exact solution is not known explicitly for this problem, we use
the same fifth order WENO scheme with N = 5120 cells to compute a reference solution and treat it as the
exact solution when computing the numerical errors for the cell averages. Final time t = 0.5 s is used to avoid
the development of shocks. The TVB constant M in the limiter for the RKDG scheme is taken as 13 for this
example. Table 7 contains the L1 errors and numerical orders of accuracy. We can clearly see that expected
order accuracy is achieved for this example.

6.5. A model in fluid mechanics with spherical symmetry

A classical singularity arising in fluid mechanics in case of spherical symmetry leads to the following model
equation:
ut þ
u2

2

� �
x

¼ 1

x
u2; ð6:16Þ
which has been considered in [4]. Notice that the source term is a nonlinear function of u. The steady state for
this problem is given by
du
dx
¼ u

x
) aðu; xÞ � u

x
¼ constant
which is of the form (4.2) with p(x) = 0 and q(x) = x. The source term can be rewritten as
u2

x
¼ u

x

� �2

x ¼ u
x

� �2 x2

2

� �
x

which is in the form of (4.3) with s1ðaÞ ¼ a2 ¼ ðuxÞ
2 and t1ðxÞ ¼ x2

2
. Note that here s1 is a nonlinear function of a.

For finite volume schemes, we apply the WENO reconstruction to the function q(x) = x, with coefficients
computed from u, to obtain q�

iþ1
2
. Since x is a polynomial with degree 1, the reconstructed q�

iþ1
2

should be exactly

xiþ1
2

no matter how we compute the WENO coefficients. Hence, we can use xiþ1
2

directly, without applying

WENO reconstruction on it. We then define ðt1Þ�iþ1
2
¼

x2

iþ1
2

2
, which leads to
f ðu�iþ1
2
Þ �

X
j

sjðaðu; xÞ�iþ1
2
ÞðtjÞ�iþ1

2
¼
ðu�

iþ1
2
Þ2

2
�

u�
iþ1

2

x�
iþ1

2

 !2 x2
iþ1

2

2
¼
ðu�

iþ1
2
Þ2

2
�
ðu�

iþ1
2
Þ2

2
¼ 0;
satisfying our requirement. For the RKDG scheme, we define
7
rs and numerical orders of accuracy for the example in Section 6.4

cells FV schemes RKDG schemes

CFL q� qu q� qu

L1 error Order L1 error Order L1 error Order L1 error Order

0.6 9.70E � 03 7.41E � 03 1.27E � 04 1.46E � 04
0.6 1.03E � 03 3.24 8.85E � 04 3.07 1.75E � 05 2.85 2.07E � 05 2.82
0.5 1.07E � 04 3.26 8.80E � 05 3.33 1.32E � 06 3.73 1.89E � 06 3.46
0.4 5.63E � 06 4.25 5.63E � 06 3.97 1.21E � 07 3.45 1.97E � 07 3.26
0.3 2.21E � 07 4.67 1.89E � 07 4.89 1.29E � 08 3.23 2.27E � 08 3.12
0.1 7.18E � 09 4.94 6.07E � 08 4.96 1.57E � 09 3.03 2.76E � 09 3.04
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ðt1ÞhðxÞ ¼
x2

2

and we can then easily verify the requirement
f ðuhÞ �
X

j

sjðahðuh; xÞÞðtjÞh ¼ 0
for the steady state solution.
Next, we present a numerical result to demonstrate the well-balanced property. The initial and boundary

conditions are given by
uðx; 0Þ ¼ 0; x 2 ½�5; 5�; ð6:17Þ
uðx ¼ �5; tÞ ¼ 10; uðx ¼ 5; tÞ ¼ �10. ð6:18Þ
The choice of these information allows us to compute the steady state, which is u = �2x. Numerical compu-
tations are performed by the well-balanced version of finite volume WENO schemes and RKDG methods. To
see the benefit of well-balanced schemes, we also use a non-well-balanced finite volume WENO schemes and
RKDG methods, and compare the results. We use 100 uniform cells here. The comparison of the convergence
history, measured by the L1 norm of the difference with the steady state, is given in Fig. 21. The advantage of
the well-balanced schemes can be easily observed. Also, we compute the L1 and L1 errors at time t = 10, with
single precision and double precision. The results are shown in Table 8. We can clearly see that the errors are
at the level of round-off errors for different precisions, verifying the well-balanced property.

6.6. Other applications

There are many other application problems which admit steady states that can be approximated by our
well-balanced schemes. These include the nozzle flow problem, a two phase flow model and a typical example
with a stiff source term. We refer to [36] for more details of the first two models. The model with a stiff source
term takes the form:
ut þ ux ¼ �
1

�
uðu� 1Þ. ð6:19Þ
We can easily check that our well-balanced schemes can be applied to these models. Due to page limitation, we
do not include computational results for these models here.
Fig. 21. Comparison of the convergence history in L1 error. Left: FV WENO schemes; right: RKDG schemes.



Table 8
L1 and L1 errors for different precisions for the steady state (6.17)–(6.18)

Precision FV DG

L1 error L1 error L1 error L1 error

Single 6.06E � 06 2.24E � 05 2.63E � 05 9.87E � 05
Double 1.60E � 14 7.42E � 14 3.25E � 14 2.16E � 13
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7. Concluding remarks

In this paper, we have extended the high order finite volume WENO and finite element discontinuous
Galerkin schemes to solve a class of conservation laws with separable source terms including the shallow water
equations, the elastic wave equation, the hyperbolic model for a chemosensitive movement and a model of
fluid mechanics in case of spherical symmetry. Our technique can also be applied to other application prob-
lems such as the nozzle flow problem and a two phase flow model [36], but we have not included them in this
paper to save space. A special decomposition of the source terms allows us to design specific approximations
such that the resulting schemes maintain properties of the exact preservation of the balance laws for certain
steady state solutions, their original high order accuracy and essentially non-oscillatory property for general
solutions. Extensive numerical examples are given to demonstrate the exactness property, accuracy, and
non-oscillatory shock resolution of the proposed numerical method.
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